Math 249 Lecture 13 Notes

Daniel Raban

September 22, 2017

1 Schur Functions

1.1 Definition and connection to antisymmetric functions

Last lecture, we had the antisymmetric functions
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We also had that a, divides ayy, for all A.

Definition 1.1. The Schur functions are functions of the form
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We have an isomorphism of abelian groups A(z1,...,x,) — Z[z1,...,2,]° given by

f = a,f. So the {s)} form a Z-basis of Ar(z1,...,2,). If |A| = d, then deg(sy) = d.

1.2 Independence of the number of variables

Remarkably, the Schur functions do not depend on the number of variables n.



Lemma 1.1. Let ¢(\) be the number of parts in the partition A. Then
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Proof. If {(\) = n, then z*** is a multiple of x1 ---2,. So axyp is divisible by x1 - - -z,
which makes ayy,(21,...,2,—1,0) = 0.

If ¢(N) < n,
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Corollary 1.1. The coefficient of my, in sx, Ky, = (my) sz, is independent of the number
of variables n (provided that n > £(\), £() ).

Proof. Let s)(z1,22,...) = Eu Ky, myu(x1,22,...). Then

sax(zi, .. xn) LX) <n

sx(r1,22,...,20,0,0,...) =
o L P,



1.3 Relationship between ¢, and s,

If f is a symmetric function, (sy) f = <wp+)‘> fa,.
What is the coefficient of sy in e?
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because this multiplication adds 1 to each exponent of k variables in each monomial of
the right term. However, if we make any two variables have the same exponent, then the
coeflicient of that term will be 0 because the product of a symmetric and an antisymmetric
function must be antisymmetric; so we can only get the term where we added 1 to the
exponents of x1,..., . Since ega, = A(1k)4ps WE have that e, = S(1k)-

If we want to express egsy in terms of a sum of s, terms, we can show that eyayi, =
> Culp+p and then divide by a, on both sides. We have
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where p — A is a sum of k distinct unit vectors. We call this a vertical k-strip. To get one
of these u, we take the Young diagram of A and add k boxes, at most 1 to each row.
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The only terms that survive are terms where we add boxes consecutively from the bottom,
i.e. terms such that p is still a partition. You can imagine gravity pulling the black boxes

down. So we get that
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where the sum is over paritions p such that p/\ is a vertical k-strip.

Example 1.1.
€2 = 5(1,1)

€(1,1) = €11 = €151 = S(2) + 5(1,1)



1.4 Relationship to continuous characters

Let p : GL,(C) — GLy(C) be a continuous representation; that is, GL,(C) © CN. Then
the character x is continuous because the trace map is continuous. Diagonalizable matrices
are dense in GL,,(C), so the values of x are determined by its values on diagonal matrices
of eigenvalues
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The value of x on these matrices is invariant under permutations of the diagonal entries,
so x € A(xy1,...,2,). We will not prove this here, but the theory of Lie groups gives us
that
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